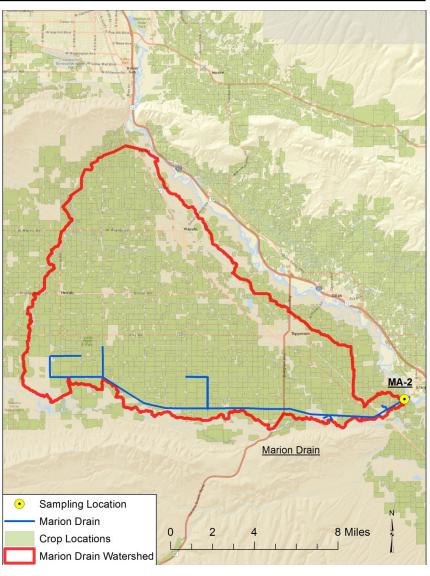


Marion Drain

Summary of 2015 Surface Water Monitoring Program Results
Washington State Department of Agriculture
Natural Resources Assessment Section
September 2016

Introduction

The Washington State Department of Agriculture has monitored pesticide concentrations in surface water throughout Washington since 2003. WSDA staff take water samples during the typical pesticide use season (March through September). In 2015 WSDA monitored 14 sites in Washington, two in Yakima County. State and federal agencies use this data to evaluate water quality and make exposure assessments for pesticides registered for use in Washington State.


Study Area

WSDA has tested water from Marion Drain from 2003 through 2015. The watershed drains about 62,445 acres of farmland, and land use is almost completely agricultural. The main crops are field corn, hops, apple and mint. Marion Drain provides habitat for fall chinook, coho, and summer steelhead.* Sample collections occurred at this site in partnership with the Yakama Nation Environmental Management Program.

* Washington State Department of Fish and Wildlife

Sampling Details

- Samples were collected for 25 weeks, from March 10 through August 25.
- Water samples were tested for 206 chemicals: current and legacy insecticides, herbicides, fungicides, rodenticides, wood preservatives, and pesticide degradates.
- Sample analysis for pesticides and total suspended solids was conducted at Manchester Environmental Laboratory in Port Orchard, WA.
- General water quality parameters; dissolved oxygen, conductivity, pH, water temperature, and streamflow were measured at every sampling event.
- Air and water temperature (measured every 30 minutes) was monitored for the entire sampling season.
- Drought conditions resulted in less than normal streamflow throughout the season.
- Juvenile fish, of an unknown species, were frequently observed during site visits.

This table shows the pesticides detected, with dates and concentrations. They are color coded to identify which assessment criteria were surpassed. The assessment criteria used here are state and federal water quality criteria, reduced by half for safety. This 0.5 safety factor is used to make sure the criteria protect aquatic life and water quality issues are found early. Watersheds with detections above the criteria are prioritized for more monitoring and educational outreach. See http://agr.wa.gov/PestFert/natresources/SWM for more information.

Assessment Criteria		Month and Day		Mar				Apr					May				Jun					Jul				Aug			
		Analyte Name †	Use‡	9	16	24	30	6	13	20	27	4	11	18	26	1	8	15	22	29	6	13	20	27	3	10	17	24	
May affect fish survival at sensitive life stages		2,4-D	Н					.048	.051		.097		.058	.048	.043	.07	.065		.043	.042			.038		.02	.026		.039	
		4,4'-DDE	D-OC																									.01	
		AMPA	Н				-		.041		.11	.082	.094																
Additional level of protection for en- dangered species		Azoxystrobin	F							.008		.008	.009	.009	.016	.016	.016	.008		.005			.005						
		Bromoxynil	Н						.04	.042	.038	.033	.038		.027														
		Chlorpyrifos	I-OP			.032	.027	.026																					
May affect invertebrate survival		Dicamba	Н											.019			.016			.019		.015							
		Diuron	H		.004	.008	.021	.01	.018	.012	.038	.023	.012	.016	.013		.008		.005	.006	.003		.005		.004				
Nearing a pesticide state water quality standard		Fludioxonil	F					.069	.041																				
		Glyphosate	Н						.11	.16		.15	.17																
		Imidacloprid	I-N									.013																	
May affect fish growth or reproduction with prolonged exposure		MCPA	Н								.039											.034							
		Methomyl	I-C							.008																			
May affect invertebrate growth or reproduction with prolonged exposure		Methoxyfenozide	I		.005																								
	1	Monuron	Н		.016																								
	1	Myclobutanil	F										.015		.015	.014	.006												
May affect aquatic plant growth		DEET	IR														.03												
		Pendimethalin	Н							.071	.1	.2	.15	.086	.18	.21	.21												
		Propiconazole	F						.017	.016		.013																	
May affect aquatic plant growth or reproduction with prolonged exposure Below all identified criteria		Pyrimethanil	F					.016			.009																		
		Sodium bentazon	Н	.067						.098	.16	.15	.2	.11	.069	.21	.3	.46	.26	.3	.31	.43	.33	.42	.34	.33	.37	.22	
		Terbacil	Н							.17	.7	.35	.32	.24	.25	.33	.27	.028	.026	.032	.086		.088	.28	.076	.053	.066	.019	
		Thiamethoxam	I-N																								.011		
		Trifluralin	Н										.027													igsquare			
No published criteria available		Temperature	N/A		51.08				52.39				62.56											73.40	67.87	66.04	64.78	64.58	
		Dissolved oxygen	N/A	11.05	11.43	10.25	10.13	11.37	18	21.29	18.5	17.19	17.13	12.98	13.43	16.22	18.18	16.06		12.13	13.2	10.92	12.01	17.19	12.17	11.7		14.38	
Not detected (below detection limit)		Percipitation	N/A	0	0.9	0.17	0.04	0	0.1	0.03	0	0	0.08	1.05	0.33	0.02	0	0	0.01	0	0.01	0	0	0	0.1	0.23	0.15	0.1	
	1	Streamflow	N/A	169.4	163.0			348.3	38.1	20.1	29.3	18.1	17.7	74.6	38.4	20.8	6.4	2.5	10.4	11.0	8.2	5.5	13.2	6.9	10.1	16.1	17.0	23.0	
		Total suspended solids	N/A	14	26	28	30	27	7	5	12	5	5	15	9	2	2	< 1	1	1	2	< 1	1	2	1	2	2	3	
		‡ C: Carbamate, D: Degrada							-											_			_			-			
No Data		*Equipment malfunction. †	Units are	as follo	ws: pest	icides, p	ıg/L; ter	nperatur	e, °F; dis	ssolved	oxygen	mg/L; pe	rcipitatio	n, week	total incl	nes; stre	amflow,	cfs; and	d total s	uspende	ed solids	s, mg/L.	Bold: In	ndicates	a tempo	erature of	dissolv	ed	

Results Summary

Only 4 of the 129 pesticide detections were at concentrations above the assessment criteria, 3 for chlorpyrifos and 1 for 4,4'DDE.

oxygen value above state water quality standards.

- Chlorpyrifos detections in late March/early April were above the assessment criteria for invertebrates, indicating that intervebrate survival may have been affected. Common products containing chlorpyrifos are Lorsban and Dursban.
- A sample collected at the end of August showed levels of 4,4'DDE, a degradation product of DDT, nearing the Washington state water quality standard. DDT products are no longer registered for use, but detections such as these are attributed to their persistence in the environment.
- Temperatures in Marion Drain remained below the standard for salmonid spawning, rearing and migration habitat until late April and remained above the standard until the end of the sampling period in late August. 2015 was an unusually hot and dry year with low stream flows.

Recommendations

- Avoid drift and runoff to adjacent surface water.
- Maintain, inspect, and calibrate application equipment.
- Continue implementation of best management practices, including conservation buffers, vegetative filter strips, sediment basins, and setbacks from water. Detections of DDT and it's degradates are closely associated with total suspended solids originating from soil erosion.